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Introduction: Rank–frequency distributions in natural language

Mathematically, Zipf’s Law is (Zipf 1949):

(1) f(r) = ar–b

r – word’s rank

f(r) – relative frequency in corpus

a – normalisation constant

b – scaling parameter

This is a power law – one of many long-tailed distributions (see e.g. Newman 2005).
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Introduction: Rank–frequency distributions in natural language

Phonemes follow a similar curve (Martindale et al. 1996, Tambovtsev & Martindale 2007):

(2) f(r) = ar–bcr

r – phoneme’s rank

f(r) – relative frequency in the lexicon

a – normalisation constant

b and c – scaling and shape parameters

This is a polylogarithmic distribution (Kemp 1995: 110).

Note that this directly generalises Zipf’s Law (1) by the addition of the cr factor, which 
introduces an exponential cut-off.

5



Introduction: Rank–frequency distributions in natural language

6



<tangent>

Martindale et al. (1996), Martindale & Konopka (1996), Tambovtsev & Mar tindale (2007) 
and, hence, many subsequent papers call this a Yule distribution.

We follow Kemp (1995: 110) and use polylogarithmic distribution in order to avoid 
confusion with the Yule–Simon distribution.

This is different to (2) but also often referred to as the Yule distribution (e.g. Yule 1924, 
Simon 1955, Chung & Cox 1994, Newman 2005).

Yet others (e.g. Zörnig & Altmann 1995, Eeg-Olofsson 2008, Klar et al. 2010) dub this the 
Good distribution after Good (1953).

</tangent>
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Introduction: Our questions

If the rank–frequency distribution of phonemes in language is described by (2):

● Does this hold for dependencies, i.e. combinations of phonemes?
● If not, can the deviations be explained?
● Would other theoretical distributions fit better?

In this talk, we limit ourselves to a consideration of vowel pairs:

● 1σ, 0p: dog – /dɒɡ/
● 2σ, 1p: spanner – /spænə/
● 3σ, 2p: Manchester – /mæntʃɛstə/,  /mæntʃɛstə/
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Introduction: Four distributions

N.B. (1) n = number of elements. (2) Normalisation constant a does not count as a parameter, as its value 

is determined as soon as the values of the other parameters are known from the requirement ∑ f(r) = 1.
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Zipf
(Zipf 1949)

Polylogarithmic
(Simon 1955)

Sigurd
(Sigurd 1968)

Borodovsky–Gusein-Zade
(Borodovsky & Gusein-Zade 1989)

Formula
f(r) = ar–b f(r) = ar–bc–r f(r) = a(1–b)br–1/(1–bn) f(r) = (a/n)log[(n+1)/r]

Parameters 1 2 1 0

Remarks A plain power 
law; linear in 
log-log space

Power law with 
exponential 
cutoff

A geometric series: the 
ratio f(r)/f(r+1) is constant 
(the parameter b)

Linear in semi-log space



Methodology: Data sources

Language Genus (family) Macro-area Source Lemma count

Breton Indo-European (Celtic) Eurasia Wiktionary 10,259

Finnish Uralic (Finnic) Eurasia Kotus 93,087

Georgian Kartvelian (Kartvelian) Eurasia Wiktionary 10,084

Italian Indo-European (Italic) Eurasia phonItalia 42,127

Lozi Niger–Congo (Bantu) Africa CBOLD 14,863

Malagasy Austronesian (Barito) Africa Wiktionary 24,220

Northern Sami Uralic (Saami) Eurasia Wiktionary 35,970

Serbo-Croatian Indo-European (Slavic) Eurasia Wiktionary 23,624

Tagalog Austronesian (Gr. Central Philippine) Papunesia Ispell 18,202
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Methodology: Data extraction & processing

Pre-processing differed slightly according to the source of each data set.

● All data from Wiktionary were culled from XML data dumps.

● Kotus, phonItalia, CBOLD and Ispell came in the form of text files.

An R script was then used to find the observed frequency of each vowel pair.

● For a five-vowel language such as Serbo-Croatian, this yields 25 possible pairs.
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Methodology: Data analysis

The polylogarithmic distribution (2) was fit to the data using non-linear least squares and 
normalisation to unity.

This procedure was repeated for the Zipf, Sigurd and BGZ distributions.

Model selection based on:

a. R2 (regression on observed v. predicted frequencies)
b. RSS (residual sum of squares, i.e. goodness of fit)
c. BIC (Bayesian information criterion)

In order to estimate noise resulting from potential sampling biases, each lexicon was 
randomly sampled 100 times (bootstrapping).
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Word of warning: fitting long-tailed distributions is fraught with difficulty (Clauset, Shalizi & Newman 

2009); our approach may not necessarily be the best one, we leave refinements for future research.



Results: R2
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Coefficient of 
determination for 
regression of observed v. 
predicted frequencies

Higher is better

Standard measure in 
previous literature…

… but: does not penalise 
model complexity!



Results: RSS
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Goodness of fit between 
empirical frequencies and 
theoretical distribution.

Lower is better.

Does not penalise model 
complexity…

… but: serves as an 
intermediate step towards 
better measures.



Results: BIC
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Bayesian information 
criterion

Calculated from RSS and 
the number of parameters 
in the distribution

Distributions with more 
parameters incur a penalty

Lower is better



Results: Median BIC scores across bootstrap (to 1 significant decimal)
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Breton Finnish Georgian Italian Lozi Malagasy
Northern

Sami
Serbo-

Croatian
Tagalog

BGZ –1219.9 –700.1 –221.4 –210.4 –232.5 –213.3 –383.3 –251.6 –154.0

polylog. –1427.0 –819.5 –272.1 –242.0 –261.4 –250.3 –396.3 –258.4 –227.3

Sigurd –1267.9 –795.8 –267.0 –239.5 –261.9 –250.5 –397.4 –241.9 –169.1

Zipf –1145.3 –615.6 –236.2 –207.5 –224.1 –191.7 –324.2 –231.8 –230.0

The polylogarithmic distribution often wins. When it doesn’t, the BIC difference to the winning 
distribution is < 2 i.e. ‘not worth more than a bare mention’ (Kass & Raftery 1993: 777).

Tagalog stands out as the exception, with Zipf fitting the best.



Discussion: Initial remarks

Our results show that vowel -pair frequencies do indeed conform closely to the polylog 
arithmic distribution.

However, when individual fits are examined in detail, it is possible to discern slight 
deviations from the theoretical distributions.

These are mostly due to phonological or morphological effects that skew the distribution 
away from what would be expected under purely random combination.
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Discussion: Individual deviations (Finnish)
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Discussion: Individual deviations (Lozi)

19See Nichols (in prep)!



Discussion: General remarks

Why do vowel pairs seemingly follow a polylogarithmic distribution?

Skewed long-tailed distributions like this can arise from a preferential attachment process:

● Items are chosen with a probability proportional to their frequency, so that “the rich get 
richer” (e.g. Yule 1924, Champernowne 1953, Simon 1955, Price 1976, Chung & Cox 1994, Martindale 

& Konopka 1996, Newman 2005).

Long-tailed distributions are found in various non-linguistic areas (e.g. genetics, ecology, 
economics, so ciology, among others).
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Discussion: General remarks

Unsure as to what the linguistic equivalent of this could be – modelling work is needed...

However, Ceolin & Sayeed (2019) and Ceolin (2019) show that the long-tailed 
distribution of singletons can be derived from a “null” model of sound change 
incorporating mergers and splits only.

Can something similar be devised to predict the distribution of pairs?

For now, we leave this question open...

21



Summary & conclusions

The rank–frequency distribution of phonemes is polylogarithmic.

And it seems that this is also the case for the dependent distribution of vowel pairs.

However, languages do exhibit deviations from this, but this appears to be due to 
language-specific phonotactic or morphological reasons.
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Future work

Redux of Tambovtsev & Mar tindale (2007) study of phonemes.

As for vowel pairs, continue with more languages and bigger and better data sets.

Explore the effect that source type has, e.g. dictionaries/lexica v. corpora.

Investigate the implications for modelling sound change, esp. null/neutral models?

Examine not just the goodness of fit, but also the distribution parameters:

What makes a language conform to a certain shape of the distribution? Is there a meaningful 

relation between the number of phonemes and the distribution parameters, for example?
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Thank you!
Plus thanks to Andrea Ceolin, Ollie Sayeed and Christopher Quarles for discussions on 

phonology, typology, sound change, power laws and complex systems.

HK received funding from the Economic and Social Research Council.
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Appendix: Kotus v. Wiktionary comparison (Finnish)
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Kotus Wiktionary


