Stephen Nichols & George Bailey University of Manchester

iculation in s-retraction

Revealing the second se

Annual Meeting of the LAGB University of Sheffield 12 September 2018

- We investigate the realisation of the sibilant in the word-initial clusters /stu/ and /stj/, which is often more [ʃ]-like, using both acoustic and articulatory data
- We address the following questions:
 - Categoricity v. gradience in s-retraction, i.e. is the surface realisation of /s/ in /stj/ and /stj/ identical to an underlying /ʃ/?
 - not just with respect to acoustics but also articulation
 - What degree of inter-speaker variation do we find? To what extent do we find different "systems" of s-retraction?
 - What happens in **/stj/** (e.g. *stupid*) and how comparable is it to **/stu/** (e.g. *street*)?
 - What does this suggest about the mechanisms that trigger this process?

- Attested in various varieties of English (see e.g. Shapiro 1995, Lawrence 2000, Durian 2007, Bass 2009, Sollgan 2013, Phillips 2016, Wilbanks 2016, 2017, Wilson 2018)
- Focus has often been sociolinguistic rather than phonetic aspect
 - But see Stevens & Harrington (2016) for work on the phonetic origins
- Well-studied with **/st**_**/** in AmE but relatively under-studied in BrE
- BrE also has **/stj/**, which is absent in AmE (at least in these contexts)
- Has been characterised as **retraction**, based primarily on acoustic data
 - Notable exceptions being ultrasound studies by Mielke et al. (2010) and Baker et al. (2011)
 - However, acoustics doesn't necessarily have a one-to-one mapping with articulation
 - See e.g. Mielke et al. (2016) on covert articulation of /』

- The rôle of /」/ has been foregrounded in many studies:
 - Shapiro (1995) claims s-retraction is triggered non-locally by /J/
 - Baker et al. (2011) find that even "non-retractors" show coarticulatory bias towards retraction in clusters containing /J/, e.g. /SpJ/
- However, some have argued that /」/'s influence may be more indirect:
 - Lawrence (2000) claims that this is local assimilation with /」/ causing affrication of /t/ to /tʃ/ leading to the retraction of /s/
 - This could be particularly appropriate for BrE where /t/ undergoes a similar process before /j/ for most speakers
 - e.g. tune /tju:n/ > [tʃu:n] stupid /stju:pid/ > [ʃtʃu:pid]?
 - But Magloughlin & Wilbanks (2016) suggest otherwise for Raleigh English

METHODOLOGY

DESIGN OF STIMULI

• 9 word-initial contexts embedded in the carrier sentence **'I know [...] is a word'**

Pseudo distractors:

Useful for independent evidence of what happens to /tɹ/ and /tj/ outside of post-/s/ environments

- All contexts precede [iː], [ʉː] and [ɒ] (except /stj/, which only occurs before [ʉː])
- 5 repetitions per token giving a total of 130 sentences per speaker

- Synchronised UTI (60fps) and audio recording (lavalier mic)
- Mid-sagittal view
- Stabilised with headcage
- Currently 8 speakers (3M; 5F) aged 18-26
 - All born (or at least raised from age 4) in Greater Manchester, but in some cases parents aren't from Manchester (or even England)

- Forced-alignment using FAVE (Rosenfelder et al. 2011)
 - Manually-corrected, with further sub-segmentation
 - e.g. tree T R IY1 > T CH R IY1
- Tongue splines tracked and exported using AAA (Articulate Instruments Ltd. 2011)
 - 3 keyframes per segment analysis conducted on keyframe 2 (segment mid-point)
 - Data read into R with rticulate (Coretta 2017) package

DATA ANALYSIS

•

- To complement ultrasound data, acoustic analysis was performed in Praat using two scripts adapted from DiCanio (2017)
- For each fricative (and affricate), we extract:
 - Centre of gravity (CoG)
 - lower value = more /ʃ/-like; higher value = more /s/-like (Jongman et al. 2000, Baker et al. 2011)
 - LPC-smoothed spectral slice
 - 10 peaks

• Ultrasound

- Modelled with GAMMs (generalised additive mixed models) using tidymv and rticulate packages (Coretta 2017, 2018)
- Ideal for modelling non-linear effects in dynamic (time/space) data (see Sóskuthy 2017 and references therein)

• Acoustics

- Mixed-effects linear regression for CoG measures with lme4 package (Bates et al. 2015)
- Supplemented with functional principle components analysis for LPCsmoothed spectral slices using fda package (Ramsay et al. 2013)
 - see Appendix

Clear bimodality for tongue body: /ʃ/-/st』/-/stj/ v. /s/

- Tongue body for /stj/ largely overlapping with /ʃ/
- But **/st**/ much more similar to **/s/** than **/ʃ/**

(also F07 and F08)

- Almost complete overlap between all four contexts, even /s/ and /ʃ/
- More differentiation at tongue tip (but confidence intervals also wider)

- Some speakers exhibit clear tongue body retraction, such that there are two groups:
 - > /s/ v. /ʃ/-/st』/-/stj/

- Others show a more intermediate pattern where /stj/ is closer to /ʃ/ but /stɹ/ is more similar to /s/
- Finally, other speakers have no apparent lingual difference, even between /s/ and /ʃ/

- In addition to visual inspection of the splines, difference smooths can be used for pairwise comparisons of tongue shapes
 - Differences between the two curves are highlighted in red (where confidence interval of difference smooth does not contain 0)
 - More red = more differentiation in tongue shape
 - /s/ and /ʃ/ completely different for M01 and M02

- In addition to visual inspection of the splines, difference smooths can be used for pairwise comparisons of tongue shapes
 - Differences between the two curves are highlighted in red (where confidence interval of difference smooth does not contain 0)
 - More red = more differentiation in tongue shape
 - /s/ and /ʃ/ largely distinct (but to a lesser extent) for F01 and M03

- In addition to visual inspection of the splines, difference smooths can be used for pairwise comparisons of tongue shapes
 - Differences between the two curves are highlighted in red (where confidence interval of difference smooth does not contain 0)
 - More red = more differentiation in tongue shape
 - /s/ and /ʃ/ not at all different for F03 and F06 (as well as F07 and F08)

CENTRE OF GRAVITY

- All speakers maintain an acoustic contrast between /s/ and /ʃ/
- Categoricity/gradience determined by Tukey contrasts for post-hoc pairwise significance tests in linear regression models (i.e. whether or not /stj/ or /stj/ are significantly different from /ʃ/)

٠

The acoustic analysis reveals that:

- 1. All speakers do have an acoustic contrast between /s/ and /ʃ/
- 2. All speakers exhibit some degree of acoustic "retraction" in /stu/ and /stj/
- This may be categorical for some and gradient for others but crucially:
 - Speakers are either categorical in both or gradient in both there is no evidence that for a single speaker retraction is more advanced in one than the other
 - Suggests that retraction in both environments is governed by the same underlying process, or at least the same phonetic motivations

- Comparable affrication of /t/ across both /stu/ and /stj/ environments
- Phonetically similar to underlying /tʃ/ (just shorter in duration)
- Some speakers do differentiate the affricated /t/ (w.r.t. CoG) depending on whether it is followed by /j/ or /ɹ/ (see Appendix)

- Crucially, all speakers affricate /t/ it's only the spectral properties of the fricated portion that are variable
- Some evidence that a speaker can affricate /t/ with only minimal retraction of /s/ (e.g. F08)
 - But no evidence that speakers retract /s/ without affricating /t/
 - e.g. *[ʃtɹiːt], *[ʃtjʉːpɪd]

DISCUSSION

THE ARTICULATION-ACOUSTICS MAPPING

COVERT ARTICULATION

- Even though some speakers show no apparent articulatory difference even between underlying /s/ and /ʃ/, the acoustic contrast is still maintained
- Rutter (2011) highlights the three phonetic parameters that define the /s/-/ʃ/ contrast:
 - TONGUE PLACEMENT alveolar for /s/, post-alveolar for /ʃ/
 - TONGUE SHAPE grooved for /s/, slit/flat for /ʃ/
 - LIP SHAPE slight labialisation for /s/, strong labialisation for /ʃ/

'It is also worth noting that changes in one of the phonetic parameters discussed above may not necessarily co-occur with changes in the other two' (Rutter 2011:31)

- **TONGUE TIP** laminal vs. apical constriction
- Speakers achieving the same acoustic output through different articulatory means?
 - Similar to covert articulation in /」 (Delattre & Freeman 1968, Mielke et al. 2016)

	articulation (UTI)		acoustics (CoG)
M01	categorical	\leftrightarrow	categorical
M02	categorical	\leftrightarrow	gradient
M03	gradient	\leftrightarrow	categorical
F01	gradient	\leftrightarrow	categorical
F03	none	\leftrightarrow	categorical
F06	none	\leftrightarrow	gradient
F07	none	\leftrightarrow	gradient
F08	none	\leftrightarrow	gradient

THE ARTICULATION-ACOUSTICS MAPPING

- No one-to-one mapping between articulation (ultrasound) and acoustics (CoG)
- We find all but one of the six possible mappings (using these categories)
 - With a larger sample size we would likely find examples of this
 - categorical \leftrightarrow categorical
 - ► M01
 - categorical \leftrightarrow gradient
 - ► M02
 - gradient ↔ categorical
 - F01, M03

- none ↔ categorical
 - ▶ F06, F07, F08
- none ↔ gradient
 - ► F03
- gradient ↔ gradient
 - <u>، ...</u>

CONCLUSIONS

- The **/st**_/ and **/stj/** contexts behave similarly in terms of acoustic s-retraction and t-affrication
- This lends support to the idea that retraction is triggered by affrication and not by /J/ directly
- Evidence that the articulatory mechanisms behind the /s/-/ʃ/ contrast are more complicated than a simple retraction of the place of articulation
 - highlights the need for a more nuanced approach to the articulation of "retraction"
 - and calls into question the suitability of "retraction" as a label for this phenomenon:
 - s-hushing? (i.e. hissing /s/ > hushing /ʃ/)
- Speakers could be hitting an acoustic target rather than articulatory target (Boersma 2011:§4)
- Lends support to the older idea that distinctive features should be defined primarily in acoustic terms (Jakobson et al. 1952, Durand 1990:§2.5)
- Highlights importance of (ideally simultaneous) articulatory **and** acoustic studies
- Although, in this case, even capturing midsagittal ultrasound does not tell the whole story

• Further avenues for articulatory exploration:

- Look more closely at the tongue shape of /J/ with midsagittal UTI
- Video recording for lip-rounding (rather than using F3-F2 as a proxy)
- Electropalatography (EPG), electromagnetic articulography (EMA) and parasagittal UTI to investigate the other articulatory mechanisms of sibilant production, e.g. tongue tip, grooving/slitting

• Acoustic work to be done:

- Investigate word-internal retraction and the effect of morpheme boundaries, e.g. posture, registry etc.
- Investigate phrase-level retraction, e.g. pass treats, and the effect of prosodic boundaries and speech rate
- Collect /ʃ』/data (e.g. shriek, shrew, shrapnel) to compare with /st』/
- Look at pre-**[p]** and pre-**[k]** environments, e.g. *spoon, spring; school, screw*
- Perform acoustic analysis on conversational data (existing corpus of 32 sociolinguistic interviews from Manchester and other North West cities)

Thanks to **Stefano Coretta** for help with ultrasound; **Patrycja Strycharczuk** and **Ricardo Bermúdez-Otero** for their feedback; **Michele Gubian** for help with FPCA; and **Jane Scanlon** for agreeing to be our first victim while we tried fitting the headcage.

http://personalpages.manchester.ac.uk/staff/stephen.nichols/
stephen.nichols@manchester.ac.uk

http://personalpages.manchester.ac.uk/staff/george.bailey/
george.bailey@manchester.ac.uk
grbails

- Articulate Instruments Ltd. 2011. Articulate Assistant Advanced. Version 2.17.02. URL: http://www.articulateinstruments.com/aaa/.
- Baker, Adam, Diana Archangeli & Jeff Mielke. 2011. Variability in American English s-retraction suggests a solution to the actuation problem. *Language Variation and Change* 23(3). 347-74.
- Bass, Michael. 2009. Street or shtreet? Investigating (str-) palatalisation in Colchester English. *Estro: Essex Student Research Online* 1(1). 10-21.
- Boersma, Paul. 2011. A programme for bidirectional phonology and phonetics and their acquisition and evolution. In Anton Benz & Jason Mattausch (eds.), *Bidirectional Optimality Theory*, 33-72. Amsterdam: John Benjamins.
- Coretta, Stefano. 2017. rticulate: Ultrasound Tongue Imaging in R. R package version 1.3.1. URL: https://github.com/stefanocoretta/rticulate.
- Coretta, Stefano. 2018. tidymv: Tidy Model Visualisation. R package version 1.3.1. URL: https://github.com/stefanocoretta/tidymv.
- Delattre, Pierre & Donald C. Freeman. 1968. A dialect study of American R's by X-ray motion picture. *Linguistics* 44. 29-68.
- DiCanio, Christian. 2017. Time averaging for fricatives. Praat script. Haskins Laboratories & SUNY Buffalo. URL: https://www.acsu.buffalo.edu/ ~cdicanio/scripts/Time_averaging_for_fricatives_2.0.praat.
- Durand, Jacques. 1990. Generative and non-linear phonology. London: Longman.
- Durian, David. 2007. Getting [ʃ]tronger every day?: More on urbanization and the socio-geographic diffusion of (str) in Columbus, OH. University of Pennsylvania Working Papers in Linguistics 13(2). 65-79.
- Gylfadottir, Duna. 2015. Shtreets of Philadelphia: An acoustic study of /str/retraction in a naturalistic speech corpus. University of Pennsylvania Working Papers in Linguistics 21(2). 89-97.
- Haley, Katarina L., Elizabeth Seelinger, Kerry Callahan Mandulak & David J. Zajac. 2010. Evaluating the spectral distinction between sibilant fricatives through a speaker-centered approach. *Journal of Phonetics* 38(4). 548-54.
- Jakobson, Roman, Gunnar Fant & Morris Halle. 1952. *Preliminaries to Speech Analysis*. Cambridge, MA: MIT Press.
- Jongman, Allard, Ratree Wayland & Serena Wong. 2000. Acoustic characteristics of English fricatives. *Journal of the Acoustical Society of America* 108(3). 1252-63.
- Lawrence, Wayne P. 2000. /str/ → /ʃtr/: Assimilation at a distance? American Speech 75. 82-7.
- Magloughlin, Lyra & Eric Wilbanks. 2016. An Apparent Time Study of (str) Retraction and /tu/ - /du/ Affrication in Raleigh, NC English. Presentation given at New Ways of Analyzing Variation 45, Vancouver, BC, Canada, 3-6 November.

- Mielke, Jeff, Adam Baker & Diana Archangeli. 2010. Variability and homogeneity in American English /J/ allophony and /s/ retraction. In Barbara Kühnert (ed.), Variation, detail, and representation. *LabPhon* 10, 699–729. Berlin: Mouton de Gruyter.
- Mielke, Jeff, Adam Baker & Diana Archangeli. 2016. Individual-level contact limits phonological complexity: Evidence from bunched and retroflex /』/. Language 92(1). 101-40.
- Phillips, Jacob B. 2016. Phonological and prosodic conditioning of /s/-retraction in American English. Presentation given at the 15th Conference on Laboratory Phonology, Ithaca, NY, United States, 3-6 November.
- Ramsay, J. O., Hadley Wickham, Spencer Graves & Giles Hooker. 2013. fda: Functional Data Analysis. R package version 2.4.0. URL: https://CRAN.Rproject.org/package=fda.
- Rosenfelder, Ingrid, Josef Fruehwald, Keelan Evanini & Jiahong Yuan. 2011. FAVE (Forced Alignment and Vowel Extraction) program suite. URL: http:// fave.ling.upenn.edu.
- Rutter, Ben. 2011. Acoustic analysis of a sound change in progress: The consonant cluster /stı/ in English. *Journal of the International Phonetic Association* 41(1). 27-40.
- Shapiro, Michael. 1995. A case of distant assimilation: /str/ → /ʃtr/. American Speech 70. 101-7.
- Sollgan, Laura. 2013. STR-palatalisation in Edinburgh accent: A sociophonetic study of a sound change in progress. MSc dissertation, University of Edinburgh.
- Sóskuthy, Márton. 2017. Generalised additive mixed models for dynamic analysis in linguistics: a practical introduction. ArXiv preprint: https://arxiv.org/ abs/1703.05339.
- Stevens, Mary & Jonathan Harrington. 2016. The phonetic origins of s-retraction: Acoustic and perceptual evidence from Australian English. *Journal of Phonetics* 58. 118-34.
- Wilbanks, Eric. 2016. (str) Retraction in Raleigh: "Identical" variants implicated in Two Separate Sound Changes. Presentation given at Penn Linguistics Conference 40, Philadelphia, PA, United States, 18-20 March.
- Wilbanks, Eric. 2017. Social and structural constraints on a phonetically-motivated change in progress: (str) retraction in Raleigh, NC. University of Pennsylvania Working Papers in Linguistics 23(1). 301-10.
- Wilson, Sophie. 2018. A midsagittal ultrasound tongue imaging study to investigate the degree of /s/-retraction in /stu/ onset clusters in British English. BA dissertation, Newcastle University.

APPENDICES

FUNCTIONAL PRINCIPLE COMPONENTS ANALYSIS (FPCA)

- Single spectral moments (e.g. CoG, skew, kurtosis) often used to distinguish sibilants (Haley et al. 2010:548-9)
- But this is an oversimplification of a complex acoustic signal

•

- We also analyse the entire curve:
- 1. LPC smoothing of spectral slice
- 2. Use FPCA to reduce dimensionality and describe curve shapes using two or three principle components (PCs)

LPC-SMOOTHED SPECTRAL SLICES

- Looking at the entire spectral profile, the same two patterns emerge as with CoG:
 - "Categorical" speakers, where /st」/ and /stj/ patterns with /ʃ/
 - "Gradient" speakers, where /st」 and /stj/ are intermediate between /s/ and /ʃ/

FUNCTIONAL PRINCIPLE COMPONENTS ANALYSIS (FPCA)

FUNCTIONAL PRINCIPLE COMPONENTS ANALYSIS (FPCA)

AFFRICATION?

٠

- For most speakers, the fricated portions of pre-/ɹ/ affrication and /tj/-coalescence are identical both to each other and to underlying /tʃ/
- But **some** speakers do differentiate the affricated **/t/** depending on whether it is followed by **/j/** or **/**_A**/** (see F07, M01, M02)