Accounting for height harmony in five-vowel Bantu languages:

Positional faithfulness and feature co-occurrence constraints

Stephen Nichols
University of Manchester

49 ${ }^{\text {th }}$ Annual Conference on African Linguistics
Michigan State University, East Lansing, MI

24 March 2018

Introducing Bantu height harmony

■ Height harmony (HH) is extremely common among Bantu languages (e.g. Clements 1991, Hyman 1999, 2003).

- Work has tended to focus on the most frequently found variety: "canonical" asymmetric HH (e.g. Moto 1989, Hyman 1991, Scullen 1992, Harris 1994, 1997, Steriade 1995, Mutaka 1995, Downing 2010).
- Indeed, this has been described as 'a classic phonology problem' (Downing \& Mtenje 2017:75).

In this talk I will...

■ Discuss five patterns from five five-vowel languages.
■ Give some background on these languages.
■ Introduce Beckman's (1997) analysis of HH in Shona:

- Positional faithfulness and feature co-occurrence constraints.
- Multiple linking allows for a reduction in the total number of tokens of a given autosegment or combinations of autosegments.
- Apply this to S. Kongo, Pende, Punu and Lozi.

■ Show that this able to account for HH in S. Kongo and Pende.

- But not so for Punu and Lozi.

The chosen five

■ Shona (S.12; Zimbabwe, Mozambique): canonical HH;
■ S. Kongo (H.16a; Angola): non-canonical HH;
■ Pende (L.11; D.R. Congo): non-canonical HH;
■ Lozi (K.21; Zambia etc.): non-canonical HH;
■ Punu (B.43; Gabon, R. Congo): no HH.

- (All Guthrie codes follow Maho 2009)

Geographical context

Some generalisations I

■ Lowering of vowels in verbal suffixes by preceding stem vowels.
■ Commonly affected suffixes: causative, applicative, reversive etc.
■ High /i u/ lowered to mid /e o/ by preceding mid vowels.

- Final vowels fall outside the domain of harmony.

■ But, see seven-vowel Koyo (C.24), where final /a/ may be raised (Hyman 1999:240).

■ Low /a/ is opaque and neither triggers nor undergoes lowering; it therefore seems to form a natural class with high /i u/.

- Though, as we shall see, this is not entirely true for Pende.

Some generalisations II

■ HH is also usually asymmetric w.r.t. rounding (or backness).
■ /i/ is lowered after both /e o/ whereas /u/ is lowered only after /o/.

- This is both common currently and robust historically (Hyman 1999:238,245).

■ Thus, for many languages, HH can, descriptively at least, be split into front (FHH) and back height harmony (BHH)

Canonical five-vowel Bantu HH

(1) a. Front height harmony: $\mathrm{i} \rightarrow \mathrm{e} /\{\mathrm{e} o\}_{\mathrm{C}} \mathrm{C}_{-}$
b. Back height harmony: $u \rightarrow 0 / o C_{-}$

The present subset I

- The five systems dealt with today are summarised below.

Shona		S. Kongo		Pende		Punu		Lozi	
i-i	$\mathrm{i} \cdot \mathrm{u}$	i.i	i.u	$i \cdot i$	$\mathrm{i} \cdot \mathrm{u}$	$i \cdot \mathrm{i}$	i•u	$i \cdot i / e$	$i \cdot u$
u-i	$\mathrm{u} \cdot \mathrm{u}$	u-i	u-u	$u \cdot i$	$\mathrm{u} \cdot \mathrm{u}$	u-i	$\mathrm{u} \cdot \mathrm{u}$	$u \cdot i / e$	$\mathrm{u} \cdot \mathrm{u}$
e.e	$\mathrm{e} \cdot \mathrm{u}$	e.e	e.o	e.e	$\mathrm{e} \cdot \mathrm{u}$	e.i	$\mathrm{e} \cdot \mathrm{u}$	$\mathrm{e} \cdot \mathrm{i} / \mathrm{e}$	$\mathrm{e} \cdot \mathrm{u}$
o.e	O.0	O.e	O.0	O.e	O.0	o-i	o.u	o.i/e	0.0
$a \cdot i$	$\mathrm{a} \cdot \mathrm{u}$	a.i	$\mathrm{a} \cdot \mathrm{u}$	$\underline{a \cdot e}$	$\mathrm{a} \cdot \mathrm{u}$	$\mathrm{a} \cdot \mathrm{i}$	$\mathrm{a} \cdot \mathrm{u}$	$\mathrm{a} \cdot \mathrm{i} / \mathrm{e}$	$\mathrm{a} \cdot \mathrm{u}$

Table 1: Height harmony systems in five-vowel Bantu languages

- FHH contexts on the left; BHH contexts on the right.

■ Bolding and underlining highlight changes in vowel height.

The present subset II

- The canonical pattern in Shona is overwhelmingly the commonest in five-vowel Bantu languages (Hyman 1999:236-46).

■ Few languages lack HH, as Punu does, or exhibit non-canonical HH, such as Pende and Lozi.

- The symmetric pattern in S. Kongo is exceedingly rare among five-vowel Bantu languages, being limited to S. Kongo itself and closely related varieties (Hyman 1999:242).

■ Incidentally, there are no (convincing) reported cases of a Bantu language with a "reverse Lozi" system (i.e. lacking BHH but having FHH; Hyman 1999:245).

Shona overview

- As reported in Beckman (1997) and elsewhere, Shona exhibits the canonical HH pattern for a five-vowel Bantu language.

■ In FHH contexts, unrounded /i/ is lowered to /e/ after both /e o/.
■ In BHH contexts, rounded $/ \mathrm{u} /$ is lowered to /o/ only after /o/ itself.
■ Examples that follow illustrate this with the applicative and reversive suffixes.

FHH in Shona

(2)

$$
\begin{array}{ll}
\text { a. } & \text {-ip-ir-a } \\
\text { b. } & \text {-svetuk-ir-a } \\
\text { c. } & \text {-per-er-a } \\
\text { d. } & \text {-son-er-a } \\
\text { e. } & \text {-vav-ir-a }
\end{array}
$$

> 'to be evil for' 'to jump in' 'to end in' 'to sew for' 'to itch at'
(Fortune 1955 in Beckman 1997:10)

BHH in Shona

(3)

$$
\begin{aligned}
& \text { a. -kiy-inur-a } \\
& \text { b. -sung-unur-a } \\
& \text { c. -pet-enur-a } \\
& \text { d. -mon-onor-a } \\
& \text { e. -nam-anur-a }
\end{aligned}
$$

(Dale 1999:165)

Canonical asymmetric HH: Shona, Chewa, Kisa etc.

- Many authors treat this as two distinct processes:

■ Moto (1989) on Chewa (N.31): triggers only permitted to spread [-high] to targets specified as [-round, -low] with the exception that [+round] triggers can only spread to targets specified as [+round, -low].
■ Nevins (2010:130-3) on Kisa (E.32) and Shona separates FHH and BHH, with only BHH being parasitic on [+round].

- Mutaka (1995:43-4) and Hyman (1991) also use a parasitic stipulation.

■ Harris (1994) does not tackle asymmetry.

- Beckman's (1997) approach does not require this division.

S. Kongo overview

■ Of the current subset, only S. Kongo has HH but no front-back asymmetry.

■ Unrounded /i/ is lowered to mid /e/ after both /e o/.
■ Rounded $/ \mathrm{u} /$ is also lowered to mid /o/ after both $/ \mathrm{e}$ o/.
■ Examples follow with the applicative and reversive suffixes.

FHH in S. Kongo

(4)

a. -sik-il-a	'soutenir, fortifier'
b. -vur-il-a	'surpasser, l'emporter'
c. -leng-el-a	'dépérir, languir'
d. -somp-el-a	's'attacher à'
e. -land-il-a	'suivre'

(de Gheel 1652 in Hyman 1999:241)

BHH in S. Kongo

(5) a. -vil-ul-a
b. -bub-ul-a
c. -lemb-ol-a
d. -tomb-ol-a
e. -bang-ul-a
'mouvoir, remuer' 'corrompre' 'barrer, effacer' 'faire monter' 'faire violence’
(de Gheel 1652 in Hyman 1999:241)

Pende overview

- In Pende, there is a front-back asymmetry

■ However, it is of a different kind to Shona.

■ Unrounded /i/ lowers not only after /e o/ but also after /a/.
■ However, as in Shona (and Lozi), /u/ only lowers after /o/.
■ This is seen with the applicative and reversive suffixes.

FHH in Pende

(6) a. -díg-íl-a
b. -túng-íl-a
c. -bemb-el-a
d. -lómb-él-a
e. -sas-el-a
'bâtir pour'
'vendre pour'
'abandonner pour' 'demander pour'
'hacher pour'
(Niyonkuru 1978 in Hyman 1999:242)

BHH in Pende

$$
\begin{array}{lll}
\text { (7) } & \text { a. } & \text {-shit-ul-a } \\
\text { b. } & \text {-vumb-ul-a } \\
\text { c. } & \text {-seng-ul-a } \\
\text { d. } & \text {-bóg-ól-a } \\
\text { e. } & \text {-kál-úg-a }
\end{array}
$$

'défaire (nœud)' 'déterrer' 'absoudre' 'briser' 'gémir'
(Gusimana 1972 in Hyman 1999:242)

Bantu languages with no HH

■ Among Bantu languages, only five-vowel languages lack HH (Hyman 1999:239).

- A possible exception to this is seven-vowel Enya (D.14; see Hyman 1999:239, footnote 8).

■ In these languages, 'the distribution of mid vowels is severely restricted' (Hyman 1999:239).

Punu overview

■ Mid /e o/ are only found root-initially (Kwenzi-Mikala 1980:8 in Hyman 1999:240).

■ Initial vowels therefore have no effect on the height of vowels in potential target suffixes.

- Thus, suffixes such as the applicative and reversive are always realised with high vowels.

No FHH in Punu

(8)

$$
\begin{array}{ll}
\text { a. } & \text {-kil-il-a } \\
\text { b. } & \text {-sub-il-a } \\
\text { c. } & \text {-ded-il-a } \\
\text { d. } & \text {-gol-il-a } \\
\text { e. } & \text {-gab-il-a }
\end{array}
$$

'repasser'
'uriner sur' 'obéir à'
'se frotter avec' 'distribuer à'
(Blanchon 1995 in Hyman 1999:240)

No BHH in Punu

$$
\begin{array}{lll}
\text { (9) } & \text { a. } & \text {-kip-ul-a } \\
\text { b. } & \text {-fung-ul-a } \\
\text { c. } & - \text {-tes-ul-a } \\
\text { d. } & \text {-dob-ul-a } \\
\text { e. } & \text {-gab-ul-a }
\end{array}
$$

'découvrir' 'révéler' 'briser' 'extraire, extirper' 'séparer'
(Blanchon 1995 in Hyman 1999:240)

Lozi overview

■ As in Shona and Pende, HH in Lozi is asymmetric.
■ But is rather different from either as FHH is entirely absent.

- There is no lowering of underlying high front vowels.
- And no raising of underlying mid front vowels.

■ But BHH in Lozi is the same as in Shona and Pende (i.e. /u/ is lowered only after /o/).

■ HH is therefore extremely restricted as a change in vowel height is effected in just a single context.

No FHH in Lozi I

(10) a. -lif-is-a
b. -fuluh-is-a
c. -belek-is-a
d. -fol-is-a
e. -bal-is-a
'to fine'
'to help paddle'
'to give employment'
'to wait till sunset'
'to teach to read'
(Jalla 1937, Fortune 2001)

No FHH in Lozi II

(11) a. -bih-el-a
b. -fuluh-el-a
c. -fwek-el-a
d. -kolop-el-a
e. -alaf-el-a
'to report to'
'to paddle towards' 'to land at, on'
'to scrub (the floor) for'
'to nurse for'
(Jalla 1937, Fortune 2001)

BHH in Lozi

(12)
a. -bip-ulul-a
b. -lut-ulul-a
c. -ez-ulul-a
d. -bof-olol-a
e. -amb-ulul-a
'to let fermented grain dry up' 'to unthatch'
'to do for the second time' 'to outspan' 'to change one's mind'
(Jalla 1937, Fortune 2001)

Preliminaries I

- Beckman's (1997) analysis of canonical HH in Shona employs positional faithfulness and feature co-occurrence constraints.

■ She argues against analyses using alignment constraints (Beckman 1997:26-33).

- The mid vowels /e o/ are seen as being more marked than peripheral /iua/.

■ Cf. Moto (1989) and Harris's (1994) treatments of Chewa, where mid vowels are also considered more marked in terms of their number of features.

Preliminaries II

- No featural underspecification for vowels:
a. $/ \mathrm{i} /=[+$ high, -low, -round, -back]
b. $/ \mathrm{u} /=[+$ high, -low, +round, + back $]$
c. $/ \mathrm{e} /=$ [-high, -low, -round, -back]
d. $/ \mathrm{o} /=[-$ high, -low, + round, + back $]$
e. $/ \mathrm{a} /=[-$ high, + low, - round, + back $]$

Preliminaries III

- The ranking of the relevant constraints is as follows:
(14) Ident(rd), Ident(lo), Ident- $\sigma_{1}(h i)$ » *RoLo » *Mid » *High » Ident(hi)
- These will be unpacked next.

Preliminaries IV

(15) a. IDEnt(rd): Do not change values for the feature [\pm round] between input and output.
b. Ident(lo): Do not change values for the feature [\pm low] between input and output.
c. Ident- σ_{1} (hi): Do not change values for the feature [\pm high] between input and output for a segment in the root-initial syllable.
d. *RoLo: Segments should not be simultaneously specified as [+round] and [-high].

Preliminaries V

e. *Mid: Segments should not be simultaneously specified as [-high] and [-low].
f. *High: Segments should not be simultaneously specified as [+high] and [-low].
g. Ident(hi): Do not change values for the feature [\pm high] between input and output.

Preliminaries VI

■ Note that this analysis does not use, e.g., alignment constraints.
■ Harmony is a result of the interaction of positional faithfulness and marked feature combinations.

■ To Krämer (2003:66), this analysis appeals because, not only does it 'impl[y] a typology of vowel harmony' but also because the constraints used are independently motivated.

Preliminaries VII

■ Finally, a further key detail in Beckman's analysis is that, where possible, adjacent vowels share Aperture or VPlace nodes.

- Certain sequences of segments are therefore assigned fewer violations than if their nodes were not shared (since there are fewer tokens of certain autosegments).
- This minimisation of the number of autosegment tokens, along with the constraint ranking, is able to account for asymmetric HH .

Walkthrough I

■ Undominated Ident(rd) prohibits changes to the feature [\pm round].

- Similarly, $\operatorname{Ident}(\mathrm{lo})$ prevents alterations to [\pm low].
- This prevents raising of $/ \mathrm{a} /$ in any position.
- And stops harmony from applying across an intervening low /a/.

Walkthrough II

(16)

/CoCaCiC/	Ident(lo)	*Mid	* High	Ident(hi)
a. C		*	*	
b. C		**!		*
c. C	*!	*		*

Walkthrough III

■ Since high-ranking Ident- σ_{1} (hi) prevents changes being made to [\pm high] in initial syllables, alterations must be made to the right.

■ Harmony therefore appears to propagate rightwards (as seen in the tableaux that follow).

Walkthrough IV

■ Mid /e o/ are able to surface in initial syllables because IDENT- σ_{1} (hi) dominates *Mid.

/CeC/	IdENT- $\sigma_{1}(\mathrm{hi})$	*MID	* HIGH	Ident(hi)
		*		
	*!			

Walkthrough V

■ And mid /e o/ surface in non-initial syllables following other mid vowels.

- This is thanks to multiple linking and the fact that both *MID and *High outrank Ident(hi).

Walkthrough VI

(18)

/CeCiC/	IDENT- $\sigma_{1}(\mathrm{hi})$	${ }^{*}$ Mid	*High	Ident(hi)
a. C		*	*!	
b. C		*		*
		**!		*
d. C	*!		*	*

Walkthrough VII

■ But they are prevented from surfacing after high /i u/for the same combination of reasons.
(19)

/CiCeC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*MID	* High	Ident(hi)
a. C		*	*!	
b. C C			*	*
c. C			**!	*
d. C	*!	*		*

Walkthrough VIII

■ Ranking *Mid above *High means that [i] not [e] surfaces after [a].

- Beckman states that this as an 'emergence of the unmarked effect (McCarthy \& Prince 1994)'.
(20)

/CaCiC/	*MID	* High	Ident(hi)
	*!		*
		*	

Walkthrough IX

- *RoLo (= *[+round, -high]) militates against [o] surfacing. Beckman (1997:24) cites Kaun (1995:144) in support (see also Kaun 2004).
- It is this that prevents the inputs $/ \mathrm{e} \cdot \mathrm{u} /$ or $/ \mathrm{e} \cdot \mathrm{o} /$ from surfacing as [$\mathrm{e} \cdot \mathrm{o}$].

■ The multiple linking needed to avoid excessive violations is not possible in this instance.

Walkthrough X

(21)

/CeCuC/	$\operatorname{IDENT}(\mathrm{rd})$	*RoLo	*MID	*High
a.			*	
b. C		*!	*	
c. C	*!		*	
d. C	*!		*	*

Walkthrough XI

■ However, this is possible with the inputs / $\mathrm{o} \cdot \mathrm{u} /$ or /o.o/.

- And so the above inputs result in the height-harmonic output [o.o].

Walkthrough XII

(22)

/ $\mathrm{CoCuC} /$	Ident(rd)	*RoLo	*MID	*High	Ident(hi)
a.		*	*	*!	
b. C		*	*		*
c.		**!	**		*
d.	*!	*	*	*	

Preview

■ Now l'll apply Beckman's (1997) work to:
■ S. Kongo-symmetric HH;
■ Pende-asymmetric HH with lowering after /a/ in FHH ;
■ Punu-no HH and mid vowels only root-initially;
■ And Lozi-only BHH and only after /o/.

- The feature specifications used are the same as for Shona.
- And the same stipulations on multiple linking apply.

■ As previously mentioned, S. Kongo and Pende pose no problems.
■ Punu and Lozi, however, do.

S. Kongo I

- The analysis of Shona is easily adapted to S. Kongo's symmetric HH system.
- This is accounted for by simply demoting *RoLo from a high- to a low-ranking position:
(23) Ident(rd), Ident(lo), Ident- $\sigma_{1}(\mathrm{hi}) »{ }^{*}$ Mid » *High » Ident(hi)» *RoLo

S. Kongo II

■ This allows an input of /e•u/ or /e•o/ to surface as height-harmonic [e•o].
(24)

/CeCuC/	IDENT(rd)	*MID	*HIGH	*RoLo
		*	*!	
b.		*		*

S. Kongo III

■ While all other outcomes remain the same as in Shona.

- E.g. the inputs $/ \mathrm{o} \cdot \mathrm{u} /$ or $/ \mathrm{o} \cdot \mathrm{o} /$ both surface as height-harmonic $[\mathrm{o} \cdot \mathrm{o}$].
(25)

/ $\mathrm{CoCuC} /$	$\operatorname{IDENT}(\mathrm{rd})$	*MID	*HIGH	*RoLo
		*	*!	
b. C $\overbrace{\substack{\text { VPlace } \\ \text { Ap [rd }]}}^{\text {ochic o }}$ C		*		*

S. Kongo IV

■ Similarly, /i/ is lowered after both /e o/.

- And, mid /e o/ are not permitted to surface after high /i u/.

Pende I

- Pende also does not pose any problems.

■ Firstly, as for Shona, ranking of *Mid and *High above Ident(hi) means that the inputs $/ \mathrm{o} \cdot \mathrm{u} /$ and $/ \mathrm{o} \cdot \mathrm{o} /$ surface as $[\mathrm{o} \cdot \mathrm{o}]$.
(26)

/ $\mathrm{CoCuC} /$	IdENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*Mıid * ${ }^{\text {* }}$ IGG	Ident(hi)
a.		*	$\begin{array}{l:l} \text { * } & \text { *! } \\ & 1 \\ & \\ & \\ & \\ & \end{array}$	
b. C		*		*

Pende II

■ But *RoLo prevents /e•u/from surfacing as [e•o], yielding [e•u] instead. (27)

/CeCuC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	*High	Ident(hi)
b. C		*!			*

Pende III

■ The added wrinkle that / $\mathrm{a} \cdot \mathrm{i} /$ surfaces as [a•e] is dealt with by ranking *High above *Mid ensures the sequence /a•i/ surfaces as [a•e].

■ Recall that for Shona, * Нigh above *Mid are the opposite way round.
(28)

/ $\mathrm{CaCiC} /$	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*High	*MID	Ident(hi)
a. C			*!		
b. C				*	*

Pende IV

■ And $/ \mathrm{a} \cdot \mathrm{u} /$ is prevented from surfacing as $[\mathrm{a} \cdot \mathrm{o}]$ by high-ranking *RoLo.
■ The observed output of $[a \cdot u]$ is therefore predicted.
(29)

/CaCuC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*Hıgh	*MID	Ident(hi)
			*		
b.		*!		*	*

Pende V

■ Note that having *High outrank *Mid does not cause problems elsewhere.

■ For example, /i•e/ still surfaces as [i.i] thanks to multiple linking.
(30)

/CiCeC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	* High	*MID	IDENT(hi)
a. C			*		*
b. C			*	*!	*

Pende VI

■ Likewise, /e•i/ surfaces as height-harmonic [e•e].
(31)

/CeCiC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*High	*MID	Ident(hi)
a. C				*	*
b. C			*!	*	

Pende VII

■ The constraint ranking for Pende is therefore:
(32) Ident(rd), Ident(lo), Ident- $\sigma_{1}(\mathrm{hi})$ » *RoLo » *High » *Mid » Ident(hi)

Punu I

- It also appears that the constraint ranking is also relatively easily adapted for Punu.
- A lack of HH can be derived by placing Ident(hi) between *Mid and * Нigh:
(33) Ident(rd), Ident(lo), Ident- $\sigma_{1}(\mathrm{hi}) »$ *RoLo » *Mid» Ident(hi) » * High
- This does not produce lowering of non-initial high vowels by initial mid vowels in the input.

Punu II

■ This does not produce lowering of non-initial high vowels by initial mid vowels in the input.
(34)

/CeCiC/	IdEnt- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	Ident(hi)	* High
			**!	*	
Le b. C			*		*
c. C $\underset{\substack{\text { Aperture } \\[- \text { olo }][- \text {-hi }]}}{\mathrm{e} \mathrm{C} \text { e }}$ C			*	*!	

Punu III

(35)

/CoCuC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	Ident(hi)	*High
a.		**!	**	*	
- b.		*	*		*
c. C		*	*	*!	

Punu IV

- However, this arrangement requires limiting mid vowels in the input to initial syllables.

■ Otherwise, non-initial mid vowels surface following initial mid vowels.

- The height-harmonic outputs are incorrectly preferred because of multiple linking.
d designates a candidate which is incorrectly selected as a winner;
© designates an actual surface form which incorrectly loses.

Punu V

(36)

/CeCeC/	IdEnt- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	$\operatorname{IdENT}(\mathrm{hi})$	*High
a. C			**!		
(ㄷ) b. C			*	*!	*
c. C Aperture [-lo] [-hi]			*		

Punu VI

(37)

/CoCoC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	Ident(hi)	* HIGH
a.		**!	**		
© b .		*	*	*!	*
		*	*		

Punu VII

■ In reality, as previously noted, mid vowels in Punu are restricted to root-initial position.

- This problem is one created by multiple linking, which is necessary to account for Shona.

Lozi I

■ The system found in Lozi poses even more of a challenge.

- The surface sequence [e.o] is disallowed.
- Thus, *RoLo must rank higher than *High.

/CeCuC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	*HIGH
a			*	*
b. C		*!	*	

Lozi II

(39)

/CeCoC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	*High
			*	*
b. C		*!	*	

Lozi III

- And, since lowering is lacking in all but one context, namely /o•u/, Ident(hi) should rank higher than * Нigh.

■ The tableaux that follow show that ranking Ident(hi) over *High prevents lowering in FHH contexts.

Lozi IV

- Firstly, a height-disharmonic input remains so in the output.

$/ \mathrm{CeCiC} /$	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	Ident(hi)	*High
a. C			*		*
b.			*	*!	

Lozi V

■ And this produces the correct output when given a harmonic input.

/CeCeC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	Ident(hi)	* High
a. C			*	*!	*
b. C e $\underset{[- \text { lo }][- \text { hi }]}{\text { Aperture }}$			*		

Lozi VI

■ However, looking at BHH , for / $\mathrm{o} \cdot \mathrm{u} /$ to surface as [$\mathrm{o} \cdot \mathrm{o}$] rather than [$\mathrm{o} \cdot \mathrm{u}$], Ident(hi) paradoxically needs to be ranked lower than *High.
(42)

/CoCuC/	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	*Hıgh	Ident(hi)
a.		**!	**		*
b. $\overbrace{[- \text { ol }][-h i][- \text { lo }][+ \text { hi }]}^{\mathrm{Ap}[r d]} \overbrace{A p[r d]}^{\mathrm{o}} \mathrm{C}$		*	*	*!	
c. C		*	*		*

Lozi VII

- Swapping round Ident(hi) and *High results in the incorrect output with the input sequence /o•u/:
(43)

/ $\mathrm{CoCuC} /$	IDENT- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	Ident(hi)	*High
a.		**!	**	*	
		*	*		*
(2) c. C $\overbrace{\substack{\text { VPlace } \\ \text { Ap [rd }][-h i]}}^{\text {O. o }}$ C		*	*	*!	

Lozi VIII

■ Though it does not alter an already height-harmonic input of /o.0/.
(44)

/CoCoC/	Ident- $\sigma_{1}(\mathrm{hi})$	*RoLo	*MID	Ident(hi)	*High
a.		**!	**		
b. $\overbrace{\text { Ap [rd] }}^{\mathrm{C}} \overbrace{\text { Ap [rd }][-h i][- \text { oc }][+ \text { hi }]}^{\mathrm{u}} \mathrm{C}$		*	*	*!	*
c. C		*	*		

Lozi IX

- The two conflicting constraint rankings are:
(34) a. Ident(rd), Ident(lo), Ident- $\sigma_{1}(\mathrm{hi})$ » *RoLo » *Mid» Ident(hi)» * High
b. Ident(rd), Ident(lo), Ident- $\sigma_{1}(\mathrm{hi}) »$ *RoLo ${ }^{*}$ *Mid» *High » IDENT(hi)

Summary and conclusions

■ I introduced Beckman's (1997) analysis of HH in Shona.
■ Applied this to HH in four further five-vowel Bantu languages.

- This encounters no problems for S. Kongo and Pende.
- But does for Punu and Lozi.

■ However, these two cases do not have common problematic areas.
■ Beckman's analysis of canonical asymmetric HH in Shona is unable to cover the complete subset of HH dealt with here.

- It is therefore not readily generalisable to all Bantu languages.

Future work

- Aim to find a solution applicable to all cases covered here.
- As well other five-vowel languages not yet discussed.

■ And expand further to include seven-vowel languages (see Appendix).

References I

Beckman, Jill N. 1997. Positional faithfulness, positional neutralisation and Shona vowel harmony. Phonology 14(1). 1-46.
Blanchon, Jean. 1995. Punu lexical database. Available to download from the Comparative Bantu Online Dictionary. Contributed by Jean Blanchon. URL: http://www.cbold.ish-lyon.cnrs.fr/Dico.asp?Langue=Punu.
Clements, George N. 1991. Vowel Height Assimilation in Bantu Languages. Proceedings of the Annual Meeting of the Berkeley Linguistics Society: Special Session on African Language Structures 17. 25-64.
Dale, D. 1999. Shona Companion: a practical guide to Zimbabwe's most widely spoken language. Gweru, Zimbabwe: Mambo Press. First edition published in 1968. Second revised and enlarged edition publishied in 1972.
Downing, Laura J. 2010. Opacity is a matter of representation: Shimakonde vowel harmony and vowel reduction. ZAS Papers in Linguistics 52. 159-91.

Downing, Laura J. \& AI Mtenje. 2017. The Phonology of Chichewa. New York: Oxford University Press.
Fortune, George. 1955. An Analytic Grammar of Shona. London: Longmans, Green \& Co.
Fortune, George. 2001. An Outline of siLozi Grammar. Lusaka, Zambia: Bookworld Publishers. First publishied in 1977 by the Institute for African Studies University of Zambia in Language in Zambia; Grammatical Sketches.
de Gheel, Georges. 1652. Le plus ancien dictionnaire bantu : het oudste Bantu-woordenboek : vocabularium. Louvain: J. Kuyl-Otto. Translation into French and Dutch by Joseph van Wing and Constant Penders published in 1928.
Gusimana, Barthelemy. 1972. Dictionnaire pende-français. Bandundu, Zaïre: Centre d'Études Ethnologiques de Bandundu.
Harris, John. 1994. Monovalency and opacity: Chichewa height harmony. UCL Working Papers in Linguistics 6. 509-47.
Harris, John. 1997. Licensing inheritance: An integrated theory of neutralization. Phonology 14. 315-70.
Hyman, Larry M. 1991. Cyclic phonology and morphology in Cibemba. University of California, Berkeley, ms.
Hyman, Larry M. 1999. The Historical Interpretation of Vowel Harmony in Bantu. In Jean-Marie Hombert \& Larry M. Hyman (eds.), Bantu Historical Linguistics: Theorical and Empirical Perspectives, 235-95. Stanford: CSLI Publications.
Hyman, Larry M. 2003. Segmental phonology. In Derek Nurse \& Gérard Philippson (eds.), The Bantu Languages, 42-58. London: Routledge.

References II

Jalla, Adolphe. 1937. Database of 'Dictionary of the Lozi language, 1: Lozi-English'. Available to download from the Comparative Bantu
Online Dictionary. Contributed by John Lowe. URL: http://www.cbold.ish-lyon.cnrs.fr/Dico.asp?Langue=Lozi.
Kaun, Abigail. 1995. The Typology of Rounding Harmony: An Optimality-Theoretic Approach. PhD thesis, University of California, Los Angeles.
Kaun, Abigail. 2004. The typology of rounding harmony. In Bruce Hayes, Robert Kirchner \& Donca Steriade (eds.), Phonetically Based Phonology, 87-116. New York: Cambridge University Press.
Krämer, Martin. 2003. Vowel Harmony and Correspondence Theory. Berlin: Mouton de Gruyter.
Kwenzi-Mikala, Jérôme T. 1980. Esquisse phonologique du punu. In François Nsukka (ed.), Éléments de description du punu, 7-18. Lyon: Université Lyon 2.
Maho, Jouni Filip. 2009. NUGL Online: The online version of the New Updated Guthrie List, a referential classification of the Bantu languages, ms. URL: http://goto.glocalnet.net/mahopapers/nuglonline.pdf.
McCarthy, John J. \& Alan Prince. 1994. The Emergence of the Unmarked: Optimality in Prosodic Morphology. Proceedings of the North East Linguistics Society 24. 55-99. Available on Rutgers Optimality Archive, ROA-13. URL: http://roa.rutgers.edu/article/view/14.
Moto, Francis. 1989. Phonology of the Bantu lexicon. PhD thesis, University College London.
Mutaka, Ngessimo. 1995. Vowel harmony in Kinande. Journal of West African Languages 25(2). 41-55.
Nevins, Andrew. 2010. Locality in Vowel Harmony. Cambridge, MA: MIT Press.
Niyonkuru, Lothaire. 1978. Phonologie et morphologie du giphende. Brussels: Université Libre de Bruxelles.
Odden, David. 2015. Bantu Phonology. In Oxford Handbooks Online, Oxford: Oxford University Press. URL:
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199935345.001.0001/oxfordhb-9780199935345-e-59.
Scullen, Mary Ellen. 1992. Chichewa vowel harmony and Underspecification Theory. Linguistic Analysis 22. 218-45.
Steriade, Donca. 1995. Underspecification and Markedness. In John Goldsmith (ed.), The Handbook of Phonological Theory, 114-74. Oxford: Blackwell Publishers.

Appendix: Seven-vowel languages I

- Beckman’s (1997) analysis appears to be generally applicable to seven-vowel languages.

Odden (2015)

Seven vowel languages have the potential for greater variation in vowel harmony.

■ A(n incomplete) sample of such HH systems is provided next (data from Hyman 1999, Odden 2015 and elsewhere).

Appendix: Seven-vowel languages II

Kikuyu	Nyamwezi		Kinga		Matumbi		Ndendeuli		Mongo- Nkundo	
i.e i.o	i-1	$i \cdot v$	i-i	$i \cdot u$	i-i	i.u	$i \cdot i$	i-u	i.e	i.o
u.e u-o	$\mathrm{u} \cdot \mathrm{I}$	u.v	$\mathrm{u} \cdot \mathrm{i}$	u.u	$\mathrm{u} \cdot \mathrm{i}$	u.u	u-i	$u \cdot u$	u.e	u.o
e.e e.o	1.1	$1 \cdot 8$	$1 \cdot 1$	$1 \cdot v$	$1 \cdot 1$	$1 \cdot 8$	e.e	e.u	e.e	e.o
o.e o.o	$v \cdot 1$	v.v	v•ı	v.v	v•ı	ช.v	o.e	o.o	o.e	0.0
$\underline{\varepsilon \cdot \varepsilon} \quad \varepsilon \cdot 0$	e.e	e.v	$\underline{\varepsilon} \boldsymbol{\varepsilon}$	$\varepsilon \cdot v$	$\underline{\varepsilon} \boldsymbol{\varepsilon}$	$\varepsilon \cdot \mathrm{u}$	$\underline{\varepsilon \cdot \varepsilon}$	$\varepsilon \cdot \mathrm{u}$	$\underline{\varepsilon} \cdot \underline{\varepsilon}$	$\underline{\varepsilon} \cdot \underline{ }$
	o.e	O.0	$\underline{\mathrm{J} \cdot \varepsilon}$	$\underline{0.3}$	$\underline{\square \cdot \varepsilon}$	$\underline{\text { 2.0 }}$	$\underline{\varepsilon \cdot \varepsilon}$	$\underline{\text { 2.0 }}$	$\underline{\nu \cdot \varepsilon}$	$\underline{3 \cdot}$
$\mathrm{a} \cdot \mathrm{e} \quad \mathrm{a} \cdot \mathrm{o}$	$\mathrm{a} \cdot \mathrm{l}$	a.v	$\mathrm{a} \cdot \mathrm{l}$	$a \cdot v$	$a \cdot i$	$\mathrm{a} \cdot \mathrm{u}$	$\mathrm{a} \cdot \mathrm{i}$	$\mathrm{a} \cdot \mathrm{u}$	$\mathrm{a} \cdot \mathrm{e}$	$\mathrm{a} \cdot \mathrm{o}$

Table 2: Height harmony systems in seven-vowel Bantu languages
(Guthrie codes: Kikuyu (E.51), Nyamwezi (F.22), Kinga (G.65), Matumbi (P.13), Ndendeuli (N.101), Mongo-Nkundo (C.61).)

Appendix: Seven-vowel languages III

■ It seems that the most immediate problem the current constraint set would encounter is that, in Kikuyu, [o] (= [+round, -high]) is found as the default harmonic back vowel in a system which is also asymmetric.

- Might this require that *RoLo $=$ *[+round, -high $]$ be accompanied by a similar constraint such as ${ }^{*}$ RoLAX $=$ * [+round, -ATR]?
- Would this additional constraint also be grounded? (i.e. à la Kaun)

